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Abstract

Background: Detection of brain lesions disseminated in space and time by magnetic resonance imaging remains a
cornerstone for the diagnosis of clinically definite multiple sclerosis. We have sought to determine if gene
expression biomarkers could contribute to the clinical diagnosis of multiple sclerosis.

Methods: We employed expression levels of 30 genes in blood from 199 subjects with multiple sclerosis, 203
subjects with other neurologic disorders, and 114 healthy control subjects to train ratioscore and support vector
machine algorithms. Blood samples were obtained from 46 subjects coincident with clinically isolated syndrome
who progressed to clinically definite multiple sclerosis determined by conventional methods. Gene expression
levels from these subjects were inputted into ratioscore and support vector machine algorithms to determine if
these methods also predicted that these subjects would develop multiple sclerosis. Standard calculations of
sensitivity and specificity were employed to determine accuracy of these predictions.

Results: Our results demonstrate that ratioscore and support vector machine methods employing input gene
transcript levels in blood can accurately identify subjects with clinically isolated syndrome that will progress to
multiple sclerosis.

Conclusions: We conclude these approaches may be useful to predict progression from clinically isolated
syndrome to multiple sclerosis.
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Background
Diagnosis of multiple sclerosis [MS] rests on clinical
symptoms and examination as outlined in the revised
McDonald’s criteria supported by appropriate magnetic
resonance imaging findings or other laboratory tests
such as detection of oligoclonal bands in cerebrospinal
fluid and evoked potential testing [1-7]. Clinically iso-
lated syndrome (CIS) is a first neurologic episode lasting
at least 24 hours possibly caused by focal inflammation
or demyelination [8,9]. Approximately 10,000-15,000
new diagnoses of MS are made in the United States each
year [10]. Approximately 2–3 times that number experi-
ence a CIS each year indicating that a far greater
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number of subjects experience a CIS than develop MS
[11-14]. Costs to healthcare of determining if a subject
with a CIS will develop MS are significant considering
the cost of MRI and additional testing performed and
the fact that many more subjects develop CIS than MS.
Presence of abnormal MRI findings and detection of

oligoclonal bands in the cerebrospinal fluid in an indi-
vidual at the time of CIS increase the likelihood of an
eventual diagnosis of MS. However, these findings do
not guarantee an eventual diagnosis of MS nor do their
absence preclude a diagnosis of MS. We have considered
that measuring gene transcript patterns in blood may
provide a means to develop tests with the ability to
exclude the diagnosis of a given disease, such as MS, or to
establish a diagnosis of MS, and have performed studies to
identify gene expression patterns that distinguish subjects
with MS from a) healthy control subjects, b) subjects with
inflammatory neurologic conditions distinct from MS
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(other inflammatory neurologic conditions, OND-I), e.g.
transverse myelitis [1], neuromyelitis optica (NMO) and c)
subjects with other non-inflammatory neurologic con-
ditions (OND-NI) [15,16]. We have also applied this
approach to gastro-intestinal diseases and have found it
possible to discriminate between irritable bowel syndrome
and inflammatory bowel disease, two conditions with
similar clinical presentations, and to discriminate between
the two most frequent and related forms of inflammatory
bowel disease, ulcerative colitis and Crohn’s disease, thus
demonstrating the general utility of our approach [17].
A limitation to these studies is that subjects included

in these analyses do not completely represent patients in
the general population in whom these tests may be
performed. Presumably, tests would be performed on
subjects who do not yet have a clinical diagnosis of a
given disease. To address this limitation, we decided to
examine subjects at the time they experience CIS who
acquire a diagnosis of MS in the future using established
criteria. We applied two independent analytic methods,
a ratioscore algorithm we previously developed and sup-
port vector machines. Our results demonstrate that
these methods predict future conversion to MS with a
high degree of specificity.

Methods
Human subjects
Blood samples in PAXgene tubes were obtained from
CTRL, MS, OND-I and OND-NI subjects. Samples were
also obtained from subjects with CIS at the time of the
blood draw. All of these subjects have gone on to de-
velop MS according to the McDonald’s criteria for the
diagnosis of MS. Age, race and gender were not statisti-
cally different among the different study groups. Time of
blood draw, for example, morning/afternoon clinics, was
also not statistically significant among the different study
groups. Relevant institutional review board approval was
obtained from all participating sites.

Transcript determinations
Total RNA purification, cDNA synthesis, and analysis
using a 384-well Taqman Low Density Array (TLDA) were
as previously described (Additional file 1: Figure S1)
[16,17]. Patient diagnosis was blinded for all experimental
procedures. Relative expression levels were determined
directly from the observed threshold cycle (CΤ). Lin-
ear expression levels were determined using the formula,
2(40-CΤ).

Ratioscore and support vector machine algorithms
The identification of the gene expression ratios and per-
mutation testing strategy employed to identify discrimin-
atory combinations of ratios to create the ratioscore
have been previously described.16 Briefly, all possible
gene-expression ratios were computed. Ratios in which
the greatest number of subjects in case groups possessed
a ratio value greater than the highest ratio value in the
control group were saved. We performed permutation
testing by randomly selecting 80% of the control group
to compare with the case group and repeating this
process 200 times producing 200 subsets of ratios. From
these subsets of ratios, we identified the smallest number
of ratios to identify the ratioscore with maximum sepa-
ration between case groups and control groups. For
example, we compared MS versus CTRL, MS versus
OND, etc. Each comparison produced a unique set of
ratios that were used to define the ratioscore algorithm
for that pairing of the case–control groups.
A support vector machine (SVM) was created from each

set of ratioscores using LS-SVMLab software (www.esat.
kuleuven.be/sista/lssvmab). For example, the gene-
expression ratios from the MS versus CTRL were used to
create a SVM for this type of comparison. The SVM was
trained with L-fold cross-validation using 60% of the data.
In this type of training a certain fraction of the training set
was omitted from training and the remaining portion of
the partial training set was used to estimate the parame-
ters in the SVM. Once the SVM was trained, the SVM
was applied to the total data set. Numbers of correct and
incorrect classifications were tabulated for total sets
(training and validation), training sets and validation sets.
As expected, the overall accuracy in the training sets was
greater than overall accuracy of the validation sets.
Analysis of CIS➔MS subject data
Gene expression ratio data obtained from CIS➔MS co-
hort samples were determined and applied to the
ratioscore or SVM defined by the independent training
cross-comparisons, e.g. CTRL versus MS, OND versus
MS. New subjects were classified into their respective
category based upon their profile of gene expression
ratios.
Results and discussion
Study cohorts
A total of 562 subjects were included in the study: 199
with clinically definite MS, 203 with OND segregated
into 84 OND-I subjects and 119 OND-NI subjects, 114
healthy control subjects and 46 subjects whose blood
sample was obtained at the time of their CIS but who
now have progressed to clinically definite MS, CIS➔MS
(Table 1). MS patients were divided into two additional
categories: those at their initial diagnosis of MS but be-
fore initiation of therapies; MS-naïve, and those ≥1 year
after diagnosis of MS and on different therapies; MS-
established. The overall laboratory and analytic processes
are summarized in Additional file 1: Figure S1.
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Table 1 Demographic characteristics of the different
subject populations

# Age P* Gender P Ethnicity P

(% F) (%, C/AA/As/H)**

MS 199 43 ± 10 NS 76 NS 80/20/0/0 NS

OND-I 84 46 ± 10 NS 68 NS 67/33/0/0 NS

OND-NI 119 46 ± 10 NS 67 NS 68/26/3/1 NS

CTRL 114 41 ± 11 77 71/22/3/3

CIS ➔MS 46 35 ± 6 NS 72 NS 82/14/4/0 NS
MS MS-treatment naïve (N = 85), MS with established disease on medications
(N = 114), OND-I other inflammatory neurologic disorders, acute disseminated
encephalomyelitis (N = 4), Bell’s Palsy (N = 3), CNS lupus (N = 2), Guillaine Barre
(N = 4), Myasthenia Gravis (N = 3), Neuromyelitis optica (N = 26), Optic neuritis
(N = 1), Transverse myelitis (N = 41), OND-NI other non-inflammatory
neurologic disorders, Alzheimer’s (N = 6), cerebral ataxia (N = 2), cerebral bleed
(N = 2), cervical radiculopathy (N = 6), drug-induced movement disorder
(N = 1), dystonia (N = 1), epilepsy (N = 4), essential tremor (N = 9), Huntington’s
disease (N = 1), hydrocephalus (N = 1), median neuropathy (N = 2),
meningioma (N = 1), migraine (N = 30), Parkinsons (N = 23), peripheral
neuropathy (N = 1), pseudotumor (N = 3), restless leg syndrome (N = 6),
seizures (N = 9), stroke (N = 10), CIS ➔MS subjects who had clinically isolated
syndrome at the time of the blood draw who have developed clinically
definite MS.
U.S sites: TN, MA, MD, NY, SC, AZ, TX, CA, samples from sites in MS, MD, NY,
AZ, and CA were obtained through the Accelerated Cure Project, European
sites: Denmark, Netherlands
*P calculated by Student’s T-test [18] or Fisher’s exact test, NS: P > 0.05,
calculated relative to CTRL.
**C Caucasian, AA African American, As Asian, H Hispanic.
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Transcript profiles
We determined the transcript level in blood for each
target gene relative to GAPDH in the three study groups,
CIS➔MS, MS-naïve, MS-established and the CTRL
group using TLDA plates. Target genes were selected
from previous microarray studies [19-21]. Inclusion of
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Figure 1 Gene-expression profiles in subjects with CIS, MS-naïve or M
determined by quantitative reverse-transcription PCR and normalized to ex
level of the indicated genes in the disease cohort relative to the CTRL coho
(P < 0.05 after Bonferroni’s correction for multiple testing) increased (red bo
ratios, log2, of the test/CTRL cohorts are displayed within the boxes. (b) Cu
disease cohort relative to CTRL. (c) Statistical significance of the expression
was determined using Student’s T test. P values are expressed as log10.
the specific gene targets was based upon the following
criteria: (a) previous studies demonstrating differential
expression among control and multiple autoimmune
disease cohorts, (b) protein products possess known
pro- or anti-inflammatory functions, (c) expression levels
change in response to pro-inflammatory stimuli (cyto-
kines), and/or (d) protein products have known roles in
cell cycle progression and/or apoptosis. The ratio, log2,
of the expression level of each gene in each study group
was calculated relative to CTRL and results are
presented in a heatmap, over-expressed: red, under-
expressed: green. Numerical ratios, log2, are displayed
within each box (Figure 1a). Transcript profiles in the
three study groups, CIS➔MS, MS-naïve, and MS-
established were highly dynamic. In the CIS➔MS
cohort, most genes were significantly over-expressed rela-
tive to CTRL. In contrast, the majority of target genes
were significantly under-expressed in the MS-established
cohort. The MS-naïve cohort was intermediate with an
almost equal number of over- and under-expressed genes
(Figure 1b). Using the student’s T test, we determined P-
values, log10, comparing each study group cohort to the
CTRL cohort (Figure 1c). Differences in transcript levels
of many genes were highly significant among the different
study groups. Of note, the P-value, log10, for PGK1
expression between the CIS➔MS cohort and CTRL
cohort was −13.3. Similarly, expression differences of
LLGL2 was most significant in the MS-naïve cohort,
log10 = −9.6 and expression differences of POU6F1
was most significant in the MS-established cohort,
log10 = 10.3. One interpretation of these results is that
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each subject within each of these three disease co-
horts, CIS➔MS, MS-naïve, and MS-established, has a
very similar target gene transcript profile suggesting
that each is mediated by a common underlying mo-
lecular pathway(s) or event(s). Even though this is a
cross-sectional rather than a longitudinal study, a sec-
ond interpretation of these results is that target gene
Figure 2 Heatmap of results from the ratioscore algorithm for the MS
ratios. Rows represent individual subjects within the MS cohort. Red in the
ratio greater than the value of the ratio in all subjects within the CTRL coh
ratio less than or equal to the highest ratio value in all subjects within the
into the ratioscore algorithm.
transcript profiles are highly dynamic as a subject
progresses from CIS to clinically definite MS to MS
disease of some duration.

Ratioscore algorithm
We used the previously described ratioscore method to
compute all gene expression ratios and permutation
: CTRL comparison. (a) Training set: Columns represent individual
heatmap denotes individual subjects with the value of the individual
ort. Green denotes individual subjects with the value of the individual
CTRL cohort. (b) Results from inputting independent CIS➔MS subjects
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testing to identify the set best able to discriminate the
MS cohort, naïve and established combined, from the
CTRL cohort [16]. We generated a heatmap to depict
which ratios (columns) were positive for each MS sub-
ject (rows; red bars indicate positive score) (Figure 2a).
One or more positive ratios produce a score ≥ 1 making
a subject positive for the indicated disease, in this case,
MS. A total of 179 of 199 MS subjects (90%) were
assigned to the MS category using the ratioscore method
and 100% of CTRL subjects were excluded from the MS
category. Using these gene expression ratios, we input
data from the CIS➔MS cohort to determine if these
Figure 3 Heatmap of results from the ratioscore algorithm for the MS
from OND. Columns represent individual ratios. Rows represent individual s
subjects with the value of the individual ratio greater than the value of the
subjects with the value of the individual ratio less than or equal to the hig
inputting independent CIS➔MS subjects into the ratioscore algorithm.
subjects would fall into the MS or CTRL category. As
above, we constructed a heatmap to depict which ratios
(columns) were positive in each CIS➔MS subject (rows).
A total of 44 of 46 CIS➔MS subjects (96%) were
assigned to the MS category using the ratioscore defined
for MS (Figure 2b).
Using a similar approach, we employed the ratioscore

algorithm to compute ratios to discriminate MS, com-
bined MS-naïve and MS-established from OND. As
above, we generated a heatmap to depict which ratios
(columns) were positive for each MS subject (rows, red
bars indicate positive score) (Figure 3a). A total of 140
: OND comparison. (a) Ratios define the ratioscore discriminating MS
ubjects within the MS cohort. Red in the heatmap denotes individual
ratio in all subjects within the CTRL cohort. Green denotes individual
hest ratio value in all subjects within the CTRL cohort. (b) Results from
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of 199 MS subjects (70%) were assigned to the MS
category using the ratioscore method and 203 of 203
(100%) of OND subjects were excluded from the MS
category. As above, using these gene expression ratios,
we input data from the CIS➔MS cohort to determine if
these subjects would fall into the MS or CTRL category.
We constructed a similar heatmap to depict which ratios
(columns) were positive in each CIS➔MS subject (rows).
A total of 46 of 46 CIS➔MS subjects (100%) fell into the
MS category using the ratioscore method (Figure 3b).
Our rationale for performing this two-tier analysis

rather than combining the CTRL and OND subjects into
one cohort was that previous studies demonstrated that
accuracy was severely compromised. To confirm that
this was the case in this analysis we compared the MS
cohort to the combined CTRL plus OND cohort and
inputted these data into the ratioscore algorithm. As
expected, overall ability to discriminate MS from this
combined cohort was compromised. Only 58% of MS
subjects were assigned to the MS category while 100% of
subjects in the combined CTRL plus OND cohort were
excluded from the MS category (Additional file 2: Figure
S2A). When we input data from the CIS➔MS cohort,
only 28 of 46 subjects (61%) were categorized as MS
(Additional file 2: Figure S2B). Thus, overall accuracy of
the ratioscore method was much improved by perfor-
ming two tiers of analyses, first MS versus CTRL, then
MS versus OND.
We also sub-divided the OND cohort into OND-I and

OND-NI (Table 1) and repeated the ratioscore algorithm
to assess how well these sub-groups could be distin-
guished from MS (Additional file 3: Figure S3A & B). In
the OND-I versus MS comparison, 90% of MS subjects
were assigned to the MS class and 100% of OND-I sub-
jects were excluded from the MS class. When we input
data from the CIS➔MS cohort, 46 of 46 subjects (100%)
were categorized as MS. In the OND-NI versus MS
Table 2 Sensitivity and specificity of ratioscore and SVM met

Control Case Sensitivity

#1 CONTROL MS 0.87

CONTROL CIS ➔ MS 0.96

#2 OND MS 0.70

OND CIS ➔ MS 1.00

#3 OND-NI MS 0.86

OND-NI CIS ➔ MS 1.00

#4 OND-I MS 0.90

OND-I CIS ➔ MS 1.00
Optimum ratios for the ratioscore method were from Figures 2, 3 and Additional fil
the SVM, 60% of controls and cases were randomly selected for the training set and
calculated for the combined sets. These results defined the SVM. CIS ➔ MS subject
the CONTROL cohort or 1 if assigned to the CASE cohort. Sensitivity was calculated
Sensitivity = # true positives/(# true positives + # false negatives).
Specificity = # true negatives/(# true negatives + # false positives).
comparison, 86% of MS subjects were assigned to the
MS class and 100% of OND-NI subjects were excluded
from the MS class. When we input data from the
CIS➔MS cohort, 46 of 46 subjects (100%) were catego-
rized as MS. We conclude that this further subdivision
of OND subjects produces only limited improvement in
overall accuracy.

Accuracy of ratioscore and SVM methods
We also trained a SVM with ratios identified by the
ratioscore method using 60% of CTRL subjects and 60%
of cases (see Methods). We validated the SVM with the
remaining 40% of CTRLs and cases. Subjects within the
CIS➔MS cohort were input into the SVM to ascertain if
the SVM would identify them as controls or cases. New
SVMs were created using 60% of OND, OND-NI, and
OND-I cohorts as controls, respectively and 60% of MS
subjects as the case cohort. SVMs were validated with
the remaining 40% of the respective control cohort and
remaining 40% of the case cohort [22]. As above, sub-
jects within the CIS➔MS cohort were input into each
SVM to ascertain if the SVM would identify them as
controls or cases. Results from the SVM method were
compared to results from the ratioscore method by
calculating sensitivity and specificity (Table 2). Overall,
ratioscore and SVM produced comparable sensitivity
and specificity in control : case comparisons. More rele-
vant, subjects within the CIS➔MS cohort were identified
as MS by both methods with a high degree of specificity.
Thus, we propose this tiered approach, MS : CTRL then
MS : OND, could be employed to predict if a subject
with CIS will develop MS with a reasonable level of
overall accuracy.
To summarize, overall transcript profiles in the CIS➔MS,

MS-naïve, and MS-established were markedly different and
we suggest that these dynamic transitions may reflect
different pathogenic states of MS or progression of MS.
hods

Ratioscore SVM

Specificity Sensitivity Specificity

1.00 0.87 0.97

0.95

1.00 0.82 0.78

1.00

1.00 0.84 0.94

1.00

1.00 0.77 0.93

0.98
e 3: Figure S3. CIS ➔ MS subject data were inputted and scores computed. For
40% were used for the validation set. Sensitivity and specificity were

data were applied to the SVM and subjects received a score of 0 if assigned to
from this output.
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Thus, we suggest that this gene expression analysis could
also be used to classify different stages of MS in an indi-
vidual. In addition, studying the molecular origins of the
robust transcript signature in CIS➔MS subjects may pro-
duce insights into the origins of MS. In spite of the differ-
ences in overall transcript profiles in these three subject
groups, ratioscore and SVM methods were able to assign
CIS➔MS subjects to the MS category with a high degree
of accuracy. This is due, in part, to the fact that the
ratioscore method does not require that all subjects within
these three cohorts representing three distinct stages of
disease progression possess identical gene expression
signatures. In contrast, many other standard methods of
analysis of gene expression signatures are dependent upon
identification of overall differences between or among
groups.
A limitation to this study is that we did not include

subjects with an initial CIS that did not develop MS.
Our rationale for not including this parameter is three-
fold. First, there is not a uniform clinical definition of
CIS. Second, subjects with a CIS may or may not have
MRI findings indicating inflammation or demyelination
and the probability that a subject with CIS will develop
MS is greater if MRI lesions are also detected. Third,
with our current knowledge, it is uncertain if it is experi-
mentally possible to absolutely conclude that a person
with CIS will not develop MS. In fact, the period of time
between an initial CIS and diagnosis of clinically definite
MS is quite variable and can exceed 5 years.
Additional files

Additional file 1: Figure S1. Flow chart describing sample collection
and processing, data generation, and methods of data analysis.

Additional file 2: Figure S2. a. Ability of the ratioscore method to
discriminate between MS and combined CTRL plus OND subjects.
Columns represent individual ratios. Rows represent individual subjects
within the MS cohort. Red in the heatmap denotes individual subjects
with the value of the individual ratio greater than the value of the ratio
in all subjects within the CTRL cohort. Green denotes individual subjects
with the value of the individual ratio less than or equal to the highest
ratio value in all subjects within the CTRL cohort. b. Results from
inputting independent CIS➔MS subjects into the ratioscore algorithm.

Additional file 3: Figure S3. Ratios making up the ratioscore that
discriminate MS from OND-NI or OND-I. a. Optimum ratios to
discriminate MS from OND-I. b. Results for individual CIS ➔MS subjects
using the MS : OND-I ratioscore. c. Optimum ratios to discriminate MS
from OND-NI. d. Results for individual CIS➔MS subjects using the
MS : ONDNI ratioscore.
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