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Abstract

Background: Large scale understanding of complex and dynamic alterations in cellular and subcellular levels
during cancer in contrast to normal condition has facilitated the emergence of sophisticated systemic approaches
like network biology in recent times. As most biological networks show modular properties, the analysis of
differential modularity between normal and cancer protein interaction networks can be a good way to understand
cancer more significantly. Two aspects of biological network modularity e.g. detection of molecular complexes
(potential modules or clusters) and identification of crucial nodes forming the overlapping modules have been
considered in this regard.

Methods: In the current study, the computational analysis of previously published protein interaction networks
(PINs) has been conducted to identify the molecular complexes and crucial nodes of the networks. Protein
molecules involved in ten major cancer signal transduction pathways were used to construct the networks based
on expression data of five tissues e.g. bone, breast, colon, kidney and liver in both normal and cancer conditions.
MCODE (molecular complex detection) and ModuLand methods have been used to identify the molecular
complexes and crucial nodes of the networks respectively.

Results: In case of all tissues, cancer PINs show higher level of clustering (formation of molecular complexes) than
the normal ones. In contrast, lower level modular overlapping is found in cancer PINs than the normal ones. Thus a
proposition can be made regarding the formation of some giant nodes in the cancer networks with very high
degree and resulting in reduced overlapping among the network modules though the predicted molecular
complex numbers are higher in cancer conditions.

Conclusion: The study predicts some major molecular complexes that might act as the important regulators in
cancer progression. The crucial nodes identified in this study can be potential drug targets to combat cancer.
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Background
Reductionist philosophy has directed biological research
for decades [1,2]. A significant amount of information
has been generated so far in the field of biological
sciences as enrichment of human knowledgebase
to understand life [1]. Despite enormous success of re-
ductionism to decode the structural and functional
attributes at cellular and molecular levels of life-
organization, it is progressively becoming clearer that
biological functions can rarely be credited to discrete
perception of individual molecules. Alternatively, most
biological phenomena emerge due to extremely inter-
active complexity derived from functional integrity of
cell’s numerous constituents [2]. Various recent ap-
proaches have been initiated and accomplished to
study biological systems in more integrative and com-
prehensive way. Network model can play an important
role to understand the complex network system based
on multiple sets of interactions and to make plain and
Figure 1 MCODE analysis of normal condition protein interaction net
clear analysis of the origin of observed network char-
acteristics [3-7]. Network biology has thus come out at
present time as a revolutionary approach for the em-
pirical study to understand complex biological systems
[3,8-12].
In cancer condition, genomic instability results in alter-

ations of downstream signal transduction pathways and
protein-protein interactions. Current understanding of the
dynamic changes at genomic and proteomic levels indicates
that cancer can be considered as a stochastic phenomenon
rather than being the result of some specific linear alter-
ations [13]. Insightful understanding of comparative regula-
tory patterns in normal and cancerous cells requires in
detailed study of molecular interactions [14] and network
biology has prospective usefulness in this regard [15]. The
concepts of network biology can be utilized to decipher the
differential interaction patterns between normal and cancer
conditions through construction of biomolecular networks
and subsequent in depth analysis of the networks.
work in bone.



Figure 2 MCODE analysis of cancer condition protein interaction network in bone.
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Studying modularity of biomolecular networks can be
an efficient way to understand their inherent properties
and identify the crucial molecular sets and components
of the networks (which is a basic challenge of the study
of these networks) [16]. In most of the cases
Figure 3 MCODE analysis of normal condition protein interaction net
biomolecular networks show modular organization that
means the network can be divided into modules
according to the density of connections among the
nodes of a network. More specifically, modules are the
subsets of a network that have comparatively high
work in breast.



Figure 4 MCODE analysis of cancer condition protein interaction network in breast.
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connectedness among the nodes (through the edges)
forming the modules. The modules have lots of connec-
tions within themselves but sparse connections among
them [17,18]. From a general point of view, depiction of
the modules is useful in understanding the structural
and functional features of networks, which has stimu-
lated many empirical researches as well as practical
applications e.g. protein complex and drug target identi-
fication [19,20].
The main objective of this paper was to study the dif-

ferential modularity patterns of normal and cancer
Figure 5 MCODE analysis of normal condition protein interaction net
protein interaction networks (PINs). The PINs were
constructed for five tissues e.g. bone, breast, colon, kid-
ney and liver in both normal and cancer conditions [21].
The network construction was based on expression data
of protein molecules participating in ten major cancer
signal transduction pathways. MCODE (molecular com-
plex detection) [22] method was used to identify and
analyze potential molecular complexes (modules or clus-
ters) of the networks. Another method ModuLand [23,24]
was used for identification and subsequent analysis of cru-
cial nodes forming overlapping modules of the networks.
work in colon.



Figure 6 MCODE analysis of cancer condition protein interaction network in colon.
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Methods
The primary data required were retrieved from differential
expression database GeneHub-GEPIS (an online bioinfor-
matics tool for inferring gene expression patterns in a large
panel of normal and cancer tissues; http://research-public.
Figure 7 MCODE analysis of normal condition protein interaction net
gene.com/Research/genentech/genehub-gepis/index.html)
[25] and protein-protein interaction prediction tools e.g.
PIPs (Human Protein-Protein Interaction Prediction;
http://www.compbio.dundee.ac.uk/www-pips/) [26,27] and
STRING (a database of known and predicted protein
work in kidney.

http://research-public.gene.com/Research/genentech/genehub-gepis/index.html
http://research-public.gene.com/Research/genentech/genehub-gepis/index.html
http://research-public.gene.com/Research/genentech/genehub-gepis/index.html
http://research-public.gene.com/Research/genentech/genehub-gepis/index.html
http://research-public.gene.com/Research/genentech/genehub-gepis/index.html
http://research-public.gene.com/Research/genentech/genehub-gepis/index.html
http://research-public.gene.com/Research/genentech/genehub-gepis/index.html
http://research-public.gene.com/Research/genentech/genehub-gepis/index.html
http://research-public.gene.com/Research/genentech/genehub-gepis/index.html
http://research-public.gene.com/Research/genentech/genehub-gepis/index.html
http://research-public.gene.com/Research/genentech/genehub-gepis/index.html
http://research-public.gene.com/Research/genentech/genehub-gepis/index.html
http://research-public.gene.com/Research/genentech/genehub-gepis/index.html
http://research-public.gene.com/Research/genentech/genehub-gepis/index.html
http://research-public.gene.com/Research/genentech/genehub-gepis/index.html
http://research-public.gene.com/Research/genentech/genehub-gepis/index.html
http://research-public.gene.com/Research/genentech/genehub-gepis/index.html
http://www.compbio.dundee.ac.uk/www-pips/


Figure 8 MCODE analysis of cancer condition protein interaction network in kidney.
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interactions; http://string.embl.de/) [28-33]. Cytoscape soft-
ware package [34-36] was used to construct protein inter-
action networks (PINs) (Additional files 1 and 2) [21]. For
modularity analysis two Cytoscape plugins namely
MCODE and ModuLand were used. MCODE was
used to identify and rank all possible molecular
complexes of particular networks and ModuLand
was used to identify crucial nodes forming the over-
lapping modules in those networks. MCODE detects
densely connected regions in large protein inter-
action networks, which may be characterized as mo-
lecular complexes [22]. The MCODE method stands
on vertex weighting by local neighborhood density
and outward traversal from a locally dense seed pro-
tein to isolate the dense regions according to given
parameters. The ModuLand method provides an al-
gorithm for determining extensively overlapping net-
work modules [23,24]. Additionally, it identifies
several hierarchical layers of modules through repre-
sentation of modules of the lower layer by meta-
nodes of the higher hierarchical layer. This method
predicts the function of the whole module and deter-
mines key nodes bridging two or multiple modules
through assigning module cores.
During MCODE and ModuLand analysis default par-

ameter values were utilized. The default MCODE set
up was fixed like, Find Clusters: in Whole Network;
Network Scoring (Advanced Option)- a) Include Loops:
Turn off, b) Degree Cutoff: 2; Cluster Finding- a) Hair-
cut: Turn on, b) Fluff: Turn off, c) Node Score Cutoff:
0.2, d) K-Core: 2, e) Max. Depth: 100. During ModuLand
analysis, selected unweighted network option was taken
with default value 1. ModuLand was run to identify and
visualize overlapping modules and merged (for modules)
with threshold value 1.0 to create correlation matrix of
original modularization and module correlation histo-
gram. Measures option of ModuLand was used to calcu-
late the graph related parameters of the overlapping
modules.

Results and discussion
Molecular complex detection
Molecular complex detection (MCODE) method has
been used to evaluate yeast protein interaction com-
pilation using known molecular complex data from
mass spectrometry of the proteome [19,37]. This
leads to the observation that highly interconnected,
or dense regions of the network may represent mo-
lecular complexes [38]. The numbers of possible
modules that can be said as molecular complexes,
differ between normal and cancer conditions in each
of the five tissues (Figures 1, 2, 3, 4, 5, 6, 7, 8, 9
and 10). The ranked molecular complex numbers of
normal and cancer protein interaction networks are
15 and 19 for bone, 22 and 28 for breast, 22 and 27
for colon, 21 and 30 for kidney and 19 and 28 for

http://string.embl.de/


Figure 9 MCODE analysis of normal condition protein interaction network in liver.
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liver respectively (Figures 1, 2, 3, 4, 5, 6, 7, 8, 9 and
10). In all cases, possible molecular complex num-
bers increase in cancer condition. The statistical sig-
nificance test also supports the difference (at p ≤
0.05) and depicts that the molecular complex num-
bers of cancer PINs are significantly increased than
the normal PINs (at p = 0.02) (Additional file 3).
Kidney cancer shows highest increment during cancer in

comparison to normal state for predicted molecular com-
plex numbers (Figures 7 and 8). Not only the molecular
complex numbers, all other parameters e.g. scores, nodes
and edges of the molecular complex networks differ be-
tween normal and cancer conditions for each tissue
(Figures 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 and Additional file 4).
As in case of cancer networks, the related edge

and node numbers increase from the normal condi-
tions for all five tissues, the overall clustering is also
enhanced in cancer networks. The normal and can-
cer networks were mainly constructed based on the
expression and interaction data of protein molecules
participating in major cancer signal transduction
pathways which has been described in our previous
paper [21]. The event of increased edges and nodes
in cancer tissues compared with normal tissues can
be explained as the enhancement of molecular inter-
actions at proteomic level in cancer states in com-
parison to normal states. It is mentionable that the
graphical representations of such differences are
based on already validated experimental data regard-
ing gene expression and protein interaction. The bio-
logical meaning of the observed differences seems to
be very obvious indicating that cancer tissue involves
more proteins to interact with each other during
cancer signaling.
A current report supports that disease genes tend to

have higher degree and connectivity in comparison to
non-disease genes in terms of expression and interaction
of proteins [39]. Some studies also indicate that proteins
encoded by cancer genes can interact strongly with other
proteins and show higher connectivity than normal con-
dition [40]. There is also evidence of overrepresentation
of 10% of protein interaction clusters within the cancer



Figure 10 MCODE analysis of cancer condition protein interaction network in liver.
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interactome when compared to the normal protein
interaction networks [7].

Overlapping module and crucial node identification from
the networks
In case of bone, overlapping module is present in
normal condition but absent in cancer (Figure 11).
Overlapping modules between normal and cancer
states differ for all other tissues (Figures 12, 13, 14,
15, 16, 17, 18 and 19). In breast, kidney and liver
edge and node numbers decrease in cancer and most
of the molecules forming the overlapping networks
are changed (Figures 12, 13, 16, 17, 18 and 19). In
colon, edge and node numbers remain constant but
most of the molecules forming the overlapping mod-
ules are altered (Figures 14, 15). The highest fluctu-
ation of overlapping module from the point of
node and edge number and molecules forming the
overlapping networks occurs in case of kidney
(Figures 16, 17). The nodes of the overlapping mod-
ule can be said as the crucial nodes with module
centrality (which is the central node of the related
modules formed by ModuLand) of the respective
network [41]. The important network properties of
the overlapping modules have been compared in
Tables 1, 2, 3, 4, 5, 6, 7, 8 and 9.
Correlation matrix and correlation histogram in both

normal and cancer conditions for each tissue represent
the nature of correlation among the nodes of the
overlapping modules (Tables 10, 11, 12, 13, 14, 15, 16,
17 and 18 and Figures 20, 21, 22, 23, 24, 25, 26, 27 and
28). Correlation matrix represents all the possible in-
teractions of the overlapping modules. Correlation
histogram represents only the valid interactions at
certain threshold (here 1.0). From the correlation
matrix and histogram, it is found that the interac-
tions among the nodes of overlapping modules differ
between normal and cancer cases (Tables 10, 11, 12,
13, 14, 15, 16, 17 and 18 and Figures 20, 21, 22, 23,
24, 25, 26, 27 and 28). The statistical significance
test also supports the difference (at p ≤ 0.1) and
depicts that valid interactions (at threshold 1.0) of
overlapping modules in cancer PINs are significantly
increased than the normal PINs (at p = 0.08)
(Additional file 3).
In case of bone, there is no correlation matrix and

correlation histogram for cancer as there is no over-
lapping module (Table 10; Figure 20). Correlation
matrix and correlation histogram show reduced
number of interactions during cancer in case of
breast, kidney and liver (Tables 11, 12, 15, 16, 17,
and 18; Figures 21, 22, 25, 26, 27 and 28). In case of
colon, the interaction number remains the same
(Tables 13, 14; Figures 23, 24). The correlation fre-
quency in the histograms fluctuates between two
conditions as the molecules representing the nodes
of overlapping modules differ (Figures 20, 21, 22, 23,
24, 25, 26, 27 and 28).



Figure 11 Overlapping module in normal condition of bone.

Figure 12 Overlapping module in normal condition of breast.
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The crucial nodes identified from the overlapping
modules are found to show important biological
signification in recently reconstructed high-quality
Staphylococcus aureus metabolic network model [41-43].
Identification of functional subgraphs from cancer pro-
tein interaction networks representing the important
modules and their components has been a key issue in
some papers [44,45].
The parameter values used for MCODE and

ModuLand analysis remained the same for both
Figure 13 Overlapping module in cancer condition of breast.



Figure 14 Overlapping module in normal condition of colon.
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normal and cancer state study and were applied
according to the suggested range by plugin developers.
So it can be assumed that the parameter values have
not any significant effect on the conclusions. It can be
also said that some minor effects of parameter values
may have some influence but these will not affect our
understanding of qualitative comparison between nor-
mal and cancer PINs.
Figure 15 Overlapping module in cancer condition of colon.
The MCODE study shows that during cancer condi-
tion in each tissue, network clustering is increased.
The ModuLand study denotes that the crucial nodes
with module centrality are decreased in cancer (except
breast cancer) representing the reduced level of mod-
ule overlapping of cancer networks. The possible rea-
son can be explained by degree distribution of the
networks (Figures 29, 30, 31, 32, 33, 34, 35, 36, 37 and
38). Degree distribution of the networks can account
for a possible explanation for counter behaving such
clustering and overlapping. In all cancer PINs, few
selective nodes with much higher degree are found
contrary to the normal PINs. From this observation,
a plausible argument can be proposed that some
giant nodes are formed in cancer PINs covering a
huge degree number and result in many randomly
dispersed nodes. Such instance reduces the number
of nodes with module centrality and subsequently
overlapping modules with reduced number of nodes
and edges are formed.

Conclusion
The study gives us a clear picture of the differential
modular nature between normal and cancer protein
interaction networks. Normal and cancer protein
interaction networks (PINs) show observable differ-
ences in case of both molecular complex and crucial
node identification. The cancer PINs show higher
predicted clustering but lower overlapping of net-
work modules in contrast to the normal ones. The
changes in predicted molecular complexes between
normal and cancer PINs can be a handy tool to de-
cipher the conversion of normal cells to cancer cells.
The major molecular complexes (higher ranked)
resulted from this study can be merged with experi-
mental evidences to identify the core regulators re-
sponsible for cancer enigma. The identified crucial
nodes can be recommended as potential drug targets
against cancer and can be further assessed with ex-
perimental studies. This study can be further intensi-
fied through the inclusion of whole proteomic
networks for normal and cancer cells derived from
high throughput proteomic methods and their subse-
quent analysis by comprehensive computational
tools. The networks considered here are unweighted
and static which makes it less reliable to understand
the real dynamic physical nature of living tissues. So
it requires further expedition to comprehend the dy-
namics as well as to overcome the present limita-
tions of network level understanding of biological
processes. Moreover, the protein interaction study
has to be merged with corresponding gene regula-
tory networks to draw more authentic conclusion re-
garding predicted modularity.



Figure 16 Overlapping module in normal condition of kidney.

Figure 17 Overlapping module in cancer condition of kidney. Figure 18 Overlapping module in normal condition of liver.
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Figure 19 Overlapping module in cancer condition of liver.

Table 1 Graph related parameters for normal condition
of bone

NodeID Effective
degree

ModuLand
community
centrality

Betweenness
centrality

ModuLand
overlap

ModuLand
bridgeness

SMAD3 1 32.76882 0 1 0

PSMD1 1 32.76882 0 1 0

Table 2 Graph related parameters for normal condition
of breast

NodeID Effective
degree

ModuLand
community
centrality

Betweenness
centrality

ModuLand
overlap

ModuLand
bridgeness

SMAD2 2.579363 564.9435 0 1 0

NRAS 1.450132 87.90458 0 1 0

PSMD12 2.022537 464.4288 0 1 0

SNX1 2.999741 13.47424 0 1 0

TCF4 0 0 0 1 0

NCK 0 0 0 1 0

Table 3 Graph related parameters for cancer condition
of breast

NodeID Effective
degree

ModuLand
community
centrality

Betweenness
centrality

ModuLand
overlap

ModuLand
bridgeness

SMAD2 2 325.3334 0 1 0

NRAS 2 79.67153 0 1 0

TAB2 2 245.9151 0 1 0

Table 4 Graph related parameters for normal condition
of colon

NodeID Effective
degree

ModuLand
community
centrality

Betweenness
centrality

ModuLand
overlap

ModuLand
bridgeness

STAT1 2.239262 6792.052 0 1 0

SMAD2 2.650014 6520.055 0 1 0

TRADD 2.68063 255.6004 0 1 0

NRAS 1.443442 91.6213 0 1 0

GAPDH 0 0 0 1 0

Table 5 Graph related parameters for cancer condition
of colon

NodeID Effective
degree

ModuLand
community
centrality

Betweenness
centrality

ModuLand
overlap

ModuLand
bridgeness

FYN 2.792082 486.4563 0 1 0

NRAS 2.049608 130.5231 0 1 0

DLL1 1.730402 326.6208 0 1 0

KRT7 1.003324 29.61218 0 1 0

GAPDH 0 0 0 1 0
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Table 6 Graph related parameters for normal condition
of kidney

NodeID Effective
degree

ModuLand
community
centrality

Betweenness
centrality

ModuLand
overlap

ModuLand
bridgeness

STAT5A 2.657912 51156.29 0 1 0

SMAD2 6.401464 50932.09 0 1 0

PSMD12 5.006495 1121.599 0 1 0

NRAS 6.620978 168.6027 0 1 0

ID3 4.308711 264.494 0 1 0

NCOA3 7.118026 258.9439 0 1 0

MYC 3.992952 421.0773 0 1 0

CSNK1D 2.100971 121.4912 0 1 0

ANKRD6 2.618028 66.80382 0 1 0

KRT7 0 0 0 1 0

POLR1B 0 0 0 1 0

Table 7 Graph related parameters for cancer condition
of kidney

NodeID Effective
degree

ModuLand
community
centrality

Betweenness
centrality

ModuLand
overlap

ModuLand
bridgeness

FYN 2 125.7711 0 1 0

NRAS 2 107.3406 0 1 0

KRT7 2 18.65667 0 1 0

Table 8 Graph related parameters for normal condition
of liver

NodeID Effective
degree

ModuLand
community
centrality

Betweenness
centrality

ModuLand
overlap

ModuLand
bridgeness

STAT1 2.86861 652.5232 0 1 0

NRAS 2.303882 214.573 0 1 0

PSMC2 2.009952 394.8492 0 1 0

POLR2H 2.006563 67.90855 0 1 0

Table 9 Graph related parameters for cancer condition
of liver

NodeID Effective
degree

ModuLand
community
centrality

Betweenness
centrality

ModuLand
overlap

ModuLand
bridgeness

SMAD2 1 105.1724 0 0 1

NRAS 1 105.1724 0 0 1

Table 10 Correlation matrix for normal condition of bone

SMAD3 PSMD1

SMAD3 1 −0.24068

PSMD1 −0.24068 1

Table 11 Correlation matrix for normal condition
of breast

SMAD2 NRAS PSMD12 SNX1 TCF4 NCK

SMAD2 1 −0.03436 −0.20478 0.024483 −0.13341 −0.13341

NRAS −0.03436 1 0.520993 0.053684 −0.11923 −0.11923

PSMD12 −0.20478 0.520993 1 −0.0323 −0.09971 −0.09971

SNX1 0.024483 0.053684 −0.0323 1 −0.01227 −0.01227

TCF4 −0.13341 −0.11923 −0.09971 −0.01227 1 −0.00608

NCK −0.13341 −0.11923 −0.09971 −0.01227 −0.00608 1

Table 12 Correlation matrix for cancer condition
of breast

SMAD2 NRAS TAB2

SMAD2 1 −0.0843 −0.14403

NRAS −0.0843 1 0.453856

TAB2 −0.14403 0.453856 1

Table 13 Correlation matrix for normal condition of colon

STAT1 SMAD2 TRADD NRAS GAPDH

STAT1 1 0.345955 0.03459 0.01538 −0.1398

SMAD2 0.345955 1 0.219089 0.011785 −0.13841

TRADD 0.03459 0.219089 1 0.252983 −0.11925

NRAS 0.01538 0.011785 0.252983 1 −0.09299

GAPDH −0.1398 −0.13841 −0.11925 −0.09299 1

Table 14 Correlation matrix for cancer condition of colon

FYN NRAS DLL1 KRT7 GAPDH

FYN 1 −0.03623 −0.11094 −0.09958 −0.10397

NRAS −0.03623 1 0.302796 0.126064 −0.09173

DLL1 −0.11094 0.302796 1 0.014064 −0.06608

KRT7 −0.09958 0.126064 0.014064 1 −0.01448

GAPDH −0.10397 −0.09173 −0.06608 −0.01448 1
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Table 15 Correlation matrix for normal condition of kidney

STAT5A SMAD2 PSMD12 NRAS ID3 NCOA3 MYC CSNK1D ANKRD6 KRT7 POLR1B

STAT5A 1 0.865947 0.066442 0.144672 0.035023 0.026829 0.039755 −0.17473 −0.22182 −0.13318 −0.16338

SMAD2 0.865947 1 0.085819 0.110893 0.020009 0.026779 0.026134 −0.1123 −0.1689 −0.13318 −0.16338

PSMD12 0.066442 0.085819 1 0.491691 0.276862 0.255873 0.253694 −0.04079 −0.16593 −0.12014 −0.14737

NRAS 0.144672 0.110893 0.491691 1 0.275515 0.246432 0.265387 −0.06826 −0.14946 −0.09565 −0.11733

ID3 0.035023 0.020009 0.276862 0.275515 1 0.983226 0.98228 −0.02846 −0.02835 −0.08511 −0.1044

NCOA3 0.026829 0.026779 0.255873 0.246432 0.983226 1 0.987846 0.013256 −0.0074 −0.08704 −0.10677

MYC 0.039755 0.026134 0.253694 0.265387 0.98228 0.987846 1 −0.01465 −0.02672 −0.0882 −0.1082

CSNK1D −0.17473 −0.1123 −0.04079 −0.06826 −0.02846 0.013256 −0.01465 1 0.422071 −0.02188 −0.02685

ANKRD6 −0.22182 −0.1689 −0.16593 −0.14946 −0.02835 −0.0074 −0.02672 0.422071 1 −0.02344 −0.02876

KRT7 −0.13318 −0.13318 −0.12014 −0.09565 −0.08511 −0.08704 −0.0882 −0.02188 −0.02344 1 −0.00784

POLR1B −0.16338 −0.16338 −0.14737 −0.11733 −0.1044 −0.10677 −0.1082 −0.02685 −0.02876 −0.00784 1

Table 16 Correlation matrix for cancer condition of
kidney

FYN NRAS KRT7

FYN 1 0.094025 −0.08621

NRAS 0.094025 1 0.062247

KRT7 −0.08621 0.062247 1

Table 17 Correlation matrix for normal condition of liver

STAT1 NRAS PSMC2 POLR2H

STAT1 1 −0.00568 −0.14947 −0.19596

NRAS −0.00568 1 0.374997 −0.17413

PSMC2 −0.14947 0.374997 1 0.173069

POLR2H −0.19596 −0.17413 0.173069 1

Table 18 Correlation matrix for cancer condition of liver

SMAD2 NRAS

SMAD2 1 0.438329

NRAS 0.438329 1

Figure 20 Correlation histogram for normal condition of bone.
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Figure 21 Correlation histogram for normal condition of breast.

Figure 22 Correlation histogram for cancer condition of breast.

Figure 23 Correlation histogram for normal condition of colon.

Figure 24 Correlation histogram for cancer condition of colon.
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Figure 26 Correlation histogram for cancer condition of kidney.

Figure 27 Correlation histogram for normal condition of liver.

Figure 28 Correlation histogram for cancer condition of liver.

Figure 25 Correlation histogram for normal condition of kidney.
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Figure 30 Degree distribution in bone cancer network.

Figure 29 Degree distribution in bone normal network.
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Figure 32 Degree distribution in breast cancer network.

Figure 31 Degree distribution in breast normal network.
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Figure 34 Degree distribution in colon cancer network.

Figure 33 Degree distribution in colon normal network.
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Figure 36 Degree distribution in kidney cancer network.

Figure 35 Degree distribution in kidney normal network.
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Figure 38 Degree distribution in liver cancer network.

Figure 37 Degree distribution in liver normal network.
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