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Abstract

Background: The diagnosis of comorbidities, which refers to the coexistence of different acute and chronic diseases,
is difficult due to the modern extreme specialisation of physicians. We envisage that a software dedicated to
comorbidity diagnosis could result in an effective aid to the health practice.

Results: We have developed an R software comoR to compute novel estimators of the disease comorbidity
associations. Starting from an initial diagnosis, genetic and clinical data of a patient the software identifies the risk of
disease comorbidity. Then it provides a pipeline with different causal inference packages (e.g. pcalg, qtlnet etc) to
predict the causal relationship of diseases. It also provides a pipeline with network regression and survival analysis
tools (e.g. Net-Cox, rbsurv etc) to predict more accurate survival probability of patients. The input of this software is
the initial diagnosis for a patient and the output provides evidences of disease comorbidity mapping.

Conclusions: The functions of the comoR offer flexibility for diagnostic applications to predict disease comorbidities,
and can be easily integrated to high–throughput and clinical data analysis pipelines.
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Introduction
The term “comorbidity” refers to the coexistence or
presence of multiple diseases or disorders in relation
to a primary disease or disorder in a patient [1].
Multimorbidity can be also defined as coexistence of
two or more diseases, but no index disease is con-
sidered [2]. A comorbidity relationship between two
diseases exists whenever they appear simultaneously
in a patient more than chance alone. It represents
the co–occurrence of diseases or presence of differ-
ent medical conditions one after another in the same
patient [3,4]. Some diseases or infections can coexist
in one person by coincidence, and there is no patho-
logical association among them. However, in most of
the cases, multiple diseases (acute or chronic events)
occur together in a patient because of the associa-
tions among diseases. These associations can be due to
direct or indirect causal relationships and the shared
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risk factors among diseases [5,6]. For an instance, peo-
ple with HIV-1 appear to have a markedly higher rate
of end-stage renal disease (ESRD) than the healthy peo-
ple [7]. It is because some of the risk factors asso-
ciated with HIV-1 acquisition are the same as those
that lead to kidney disease. Patients with chronic kid-
ney disease increase risk of cardiovascular mortality [8].
Thus HIV-1 infections is associated with cardiovascular
mortality.
One of the most challenging problems in biomed-

ical research is to understand the complex correla-
tion mechanisms of human diseases. Recent research
has increasingly demonstrated that many seemingly dis-
similar diseases have common molecular mechanisms.
Exploring relations between genes and diseases at the
molecular level could greatly facilitate our understand-
ing of pathogenesis, and eventually lead to better diag-
nosis and treatment. Diseases are more likely to be
comorbid if they share associated genes [3]. How-
ever, some diseases have direct positive association
among them while other diseases may have indirect
positive association among them through the biologi-
cal pathways. The analysis of pathway-disease associ-
ations, in addition to gene-disease associations, could
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be used to clarify the molecular mechanism of a dis-
ease. Ashley, Butte, Wheeler, Chen, Klein, Dewey, Dudley,
Ormond, Pavlovic, Morgan, Pushkarev, Neff, Hudgins,
Gong, Hodges, Berlin, Thorn, Sangkuhl, Hebert, Woon,
Sagreiya, Whaley, Knowles, Chou, Thakuria, Rosenbaum,
Zaranek, Church, Greely and Quake et al. analysed per-
sonal genome, gene-environment interactions and con-
ditionally dependent risks for the clinical assessment
[9]. Population-based disease association is also use-
ful in conjunction with molecular and genetic data
to discover the molecular origins of disease and dis-
ease comorbidity [4]. Patient medical records contain
important clarification regarding the co-occurrences of
diseases affecting the same patient. To estimate the
correlation starting from disease co-occurrence, we
need to quantify the strength of the comorbidity risk.
Disease Ontology (DO) is also helpful to promote
the investigation of diseases and disease risk factors
[10].
Comorbidity is an important factor for better risk strat-

ification of patients and treatment planning. The more
precise predictions can be made by taking comorbid-
ity into account, the more accurate patient management
could be possible. Comorbidity has a significant predic-
tive value on overall survival [11]. Older persons’ sur-
vival is highly dependent on it. Comorbidities influence
patients treatments and confound survival analysis [12].
For an instance, comorbidity has a major effect on sur-
vival in gynaecological cancer, particularly for cancer of
the cervix [13]. Many researchers have developed sur-
vival analysis software for predicting outcomes of the
disease [14-23]. However, all of them are based on the
single disease. But survival of patient depends on the dis-
ease comorbidity, environment, patient age and treatment
plan. Kan et al. performed survival analysis of elderly
dialysis patients considering comorbidity risk [24]. They
observed that the life expectancy decreases with increas-
ing the number of comorbid diseases. So it is important
to consider the comorbidity for more accurate survival
prediction.
We have developed an R software comoR to com-

pute statistically significant associations among dis-
eases and to predict disease comorbidity risk by using
diverse set of data. The input of this software is
the initial diagnosis for a patient. To perform the
computation of the comorbidity risk, this software uses
clinical, gene expression, pathways and ontology data.
It provides different comorbidity assessment; integra-
tion of genetic information with the comoR output data
could be used to infer causal relationships among dis-
eases and to predict more accurate survival probabil-
ity of patients. The goal of this software is to assist
a medical practitioner in decision making in potential
treatment.

Implementation
The comoR provides a number of processing options
to find comorbidity of a disease. R bioconductor anno-
tation data packages “org.Hs.eg.db” and “DO.db” are
used for the annotation and mapping between gene
symbol, Entrez id, OMIM (Online Mendelian Inheri-
tance in Man) id and DO (Disease Ontology) term
[25]. comoR is also dependent on “DOSE” biocon-
ductor package for the mapping of DO and DOLite
[26]. A set of differential expressed gene symbols/Entrez
ids/OMIM id/3 or 5 digit ICD-9-CM code of the
disease can be used as input of comoR functions.
Flow diagram of the comoR software is shown in
Figure 1.

Comorbidity based on clinical information
Patient medical records contain important clarifica-
tion regarding the co-occurrences of diseases affecting
the same patient. Two diseases are connected if they
are co-expressed in a significant number of patients
in a population [4]. To estimate the correlation start-
ing from disease co-occurrence, we need to quantify
the strength of the comorbidity risk. We used two
comorbidity measures to quantify the strength of comor-
bidity associations between two diseases: (i) the Rel-
ative Risk (fraction between the number of patients
diagnosed with both diseases and random expectation
based on disease prevalence) as the quantified mea-
sures of comorbidity tendency of two disease pairs;
and (ii) φ-correlation (Pearsons correlation for binary
variables) to measure the robustness of the comor-
bidity association. We used the relative risk RRij and
φ-correlation φij of observing a pair of diseases i
and j affecting the same patient. The RRij allows us
to quantify the co-occurrence of disease pairs com-
pared with the random expectation. When two dis-
eases co-occur more frequently than expected by chance,
we will get RRij > 1 and φij > 0. The two
comorbidity measures are not completely indepen-
dent of each other. We included edges between dis-
ease pairs for which the co-occurrence is significantly
greater than the random expectation based on pop-
ulation prevalence of the diseases. Clinical informa-
tion is from the http://www.icd9data.com in the ICD-
9-CM format and collected from [4]. The function
comorbidityPatients of the comoR package is able
to take input an OMIM id/3 or 5 digit ICD-9-CM
code of a disease or a list of gene symbols/Entrez ids
and provides comorbidity pattern of diseases based on
the relative risk and φ-correlation between two dis-
eases. comorbidityPatients requires two parame-
ters id list and id type (see details in the Additional
file 1). An example and its output (Figure 2) is as
follows:

http://www.icd9data.com
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Figure 1 Flow diagram of the comoR software. Step 1: comoR takes as input preliminary diagnosis data of a patient. Step 2: It preprocesses and
updates required databases, performs statistical computation (hypergeometric and semantic similarity tests), and calculates relative risks and
φ-correlation (Pearsons correlation for binary variables) between diseases. Step 3: Comorbidity scores and disease network are provided as a result
to the user. Step 4: Causal inference graphical models with the R package pcalg. Step 5: Visualisation of the comorbidity map and survival probability
of patient considering comorbidity4. This map could be extended to incorporate diet and exercise as in [9]. Symbols D, g, P and DOID are used to
indicate disease, gene, pathway and disease ontology id respectively.
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Figure 2 Output figure of >comorbidityPatients("042" , "ICD9"). The icd-9-CM code of the HIV is 042, which is used as input to
the comorbidityPatients. We show disease comorbidity for the HIV infection.

Gene–disease association
comoR makes use of OMIM [27] to explore the genetic
association between diseases. Two diseases are connected
if they share at least one gene that is statistically signifi-
cant dysregulated [28]. comoR computes disease-disease
association by adopting semantic similarity measures and
hypergeometric test. OMIM diseases ids are mapped with
ICD-9-CM codes based on the literature [3]. Neighbour-
hood based benchmark method is used to identify the
comorbidity pattern among diseases [28]. We build the
associated network as a bipartite graph; each common
neighbour node is selected based on the Jaccard coeffi-
cient method [28]. comorOMIM function of comor takes
as input any of these three options: a list of gene symbols,
a list of Entrez gene ids or an OMIM id. This function
provides disease comorbidity associations and network
based on the disease-gene associations. comorOMIM
requires two parameters id list and id type (see details
in the Additional file 1). An example and its output
(Figure 3) is as follows:

Pathway–disease association
The analysis of pathway-disease associations is impor-
tant to investigate the molecular mechanism of a dis-
ease. We have used Kegg pathway and disease database
(http://www.genome.jp/kegg/) and developed a function
comorbidityPath to predict the comorbidity risk
based on disease pathway association [29]. This software
identifies the disease–disease associations using the asso-
ciations among molecular pathways and their associated
diseases. Hypergeometric test is used for extracting asso-
ciations among pathways and diseases; graph topological
structure is used to measure the similarity between dis-
eases [30]. comorbidityPath function takes as input
any of the following options: a list of gene symbols, a list
of Entrez gene ids or an OMIM id. This function provides
disease comorbidity associations and network based on
the pathway-disease associations. comorbidityPath
requires two parameters id list and id type (see details in
the Additional file 1). An example and its output (Figure 4)
is as follows:

http://www.genome.jp/kegg/


Moni and Liò Journal of Clinical Bioinformatics 2014, 4:8 Page 5 of 11
http://www.jclinbioinformatics.com/content/4/1/8

Ontology and causal inference to evaluate comorbidity
DO provides an open source ontology for the integra-
tion of biomedical data that is associated with human
diseases [10]. Terms in DO include disease names
and disease-related concepts, which are organised in a

directed acyclic graph (DAG) [31]. Disease Ontology Lite
(DOLite) gives more interpretable results for gene-disease
association tests [32]. DO and DOLite enable us to analyse
disease association by adopting semantic similarity mea-
sures to expand our understanding of the relationships

Figure 3Output figure of > comorbidityOMIM("180300" , "OMIM"). The OMIM disease id of the Rheumatoid arthritis is 180300, which
is used as input to the comorbidityOMIM. We show disease comorbidity for the Rheumatoid arthritis through the gene disease associations.
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Figure 4 Output figure of >comorbidityPath("00010", "Pathway"). The kegg pathway id 00010 is used as input to the
comorbidityPath. We show disease comorbidity for the pathway "00010" through the pathway disease associations.

between different diseases. The semantic comparisons of
DO provides quantitative ways to compute similarities
between diseases [30]. So we have developed a func-
tion comorbidityDO for the computation of DO and
DOLite based disease comorbidity in an ontology sense.
It is a DO-based enrichment analysis function to measure
association among diseases and to explore their functional
associations from gene sets. Hypergeometric geometric
test is used to compute whether the number of selected
genes associated with the DO term is larger than expected.
Gene set enrichment analysis are used for predicting the
significance of gene–disease and disease–disease associa-
tions. comorbidityDO function operates by using either
of the following input: DO id, a list of gene symbols or
Entrez gene ids of the patient sample. This function pro-
vides disease comorbidity associations and network based
on the DO and DOLite. comorbidityDO requires two
parameters id list and id type (see details in the Additional
file 1). An example and its output (Figure 5) is as follows:

Comorbidity associations among diseases, i.e. the out-
put of comoR, could be a useful input for causal infer-
ence software, precisely pcalg to predict the causal
inference relationships among the comorbidity dis-
eases. In the comoR, we have included a function
comorbidityCausality to predict the causality
inference among the diseases using the PC, RFCI, and
FCI algorithms of the pcalg [33]. The directed edges
of the network show the direction of the cause-effect
relationships among diseases. Finally a network disease
analysis leads to a patient comorbidity map which is a
powerful visualisation of the patient condition. Nodes
of the comorbidity map represent diseases and edge
between the nodes represents comorbidity risk. Notewor-
thy, if related molecular information is available, exercise
and diet could be also incorporated and be used in the
comorbidity map. comorbidityCausality requires
two parameters: comorbidity associations of comoR out-
put and preprocessed gene expression data (see details in
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Figure 5 Output figure of comorbidityDO("DOID:9352" , "DOID"). The DO id of the type 2 diabetes mellitus is DOID:9352, which is
used as input to the comorbidityDO. We show disease comorbidity for the type 2 diabetes mellitus using the disease ontology.

the Additional file 1). An example and its output (Figure 6)
is as follows:

>library("pcalg")
>data("gmG")
>comorbiditydata<-comorbidityOMIM
("101900", "OMIM")
>comorbidityCausality("gmG",
"comorbiditydata", "PC")

Methods
We used two comorbidity measures to quantify the
strength of comorbidity associations between two dis-
eases - Relative Risk (RRij) as the quantified measures
of comorbidity tendency of two disease pairs and φ-
correlation (φij) to measure the robustness of the comor-

Figure 6 Output figure of comorbidityCausality("gmG",
"comorbiditydata", "PC").We show cause-effect
relationships among 6 diseases.

bidity association, which are calculated by using following
two equations:

RRij = Cij/N
(PiPj − Cij)/N2 = CijN

PiPj − Cij
(1)

φij = CijN − PiPj√
(PiPj − Cij)(N − Pi)(N − Pj)

(2)

where N is the total number of patients in the popula-
tion, Pi and Pj are incidences/prevalences of diseases i
and j respectively. Cij is the number of patients that have
been diagnosed with both diseases i and j, and PiPj is the
random expectation based on disease prevalence. The sig-
nificance of the relative risk RRij is calculated by using the
Katz et al. method to estimate confidence intervals [34].
The 99% confidence interval for the RRij between two
diseases i and j is calculated by: Lower bounds of the con-
fidence interval (LB) = RRij ∗ exp(−2.56 ∗ σij) and Upper
bounds of the confidence interval (UB) = RRij∗exp(2.56∗
σij), where σij is given by: σij = 1

Cij
+ 1

PiPj − 1
N − 1

N2 . Disease
pairs within the 99% confidence interval are only consid-
ered if the LB value is larger than 1 when RRij is larger than
1, or if the UB value is smaller than 1 when RRij is smaller
than 1. For φij > 0 comorbidity is larger than expected
by chance and for φij < 0 comorbidity is smaller than
expected by chance. We can determine the significance of
φ �= 0 by performing a t-test. This consists of calculat-
ing t according to the formula: t = φ

√
n−2√
1−φ2

, where n is the
number of observations used to calculate φ.
Diseases are connected when the diseases share at least

one significant dysregulated gene or signaling pathway.
Let a particular set of human diseases D and a set of
human genes G, gene-disease associations attempt to find
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whether gene g ∈ G is associated with disease d ∈ D. If Gi
and Gj, the sets of significant up and down dysregulated
genes associated with diseases i and j respectively, then the
number of shared dysregulated genes (ngij) associated with
both diseases i and j is as follows:

ngij = N(Gi ∩ Gj) (3)

The co-occurrence refers to the number of shared genes
or pathways between two diseases. Each common neigh-
bour is calculated based on the Jaccard Index method to
measure the strength of co-occurrence, where association
score for a node pair is as:

Assi,j = N(Gi ∩ Gj)

N(Gi ∪ Gj)
(4)

Hypergeometric test is implemented for enrichment
analysis [31]. It is used to assess whether the number
of selected genes or pathways associated with disease is
larger than expected. To determine whether any disease
annotate a specified list of genes at frequency greater than
that would be expected by chance, comoR calculates a p-
value using the hypergeometric distribution. Significance
of the enrichment analysis is assessed by the hypergeo-
metric test and the p − value is adjusted by false discov-
ery rate (FDR). The hypergeometric p-value is calculated
using the following formula:

p − value = 1 −
k−1∑
i=0

(M
i
)(N−M

n−i
)

(N
n
) (5)

where N is the total number of reference genes, M is the
number of genes that are associated to the disease of inter-
est, n is the size of the list of genes of interest and k is the
number of genes within that list which are associated to
the disease.
Graph-based methods using the topology of DO graph

structure is used to compute semantic similarity. We have
adapted the method for measuring the functional simi-
larity of protein-coding genes based on GO terms [30].
Semantic values of DO term or diseases were calculated
based on the DAG of corresponding diseases. Semantic
similarity for any pair of DO term or diseases betweenDA
andDB is calculated based on disease semantic value. For-
mally, a DO term or a disease A can be represented as a
graph DAGA = (A,TA,EA), where TA is the set of all dis-
eases or DO terms in DAGA, including term A itself and
all of its ancestor terms in the DO graph, and EA is the
set of corresponding edges that connect the DO terms in
DAGA. To encode the semantic of a DO term in a mea-
surable format to enable a quantitative comparison, Wang
firstly defined the semantic value of term A as the aggre-
gate contribution of all terms inDAGA to the semantics of

term A, terms closer to term A in DAGA contribute more
to its semantics [30]. Thus, we defined the contribution of
a disease or DO term t in DAGA to the semantics of DO
termA as theD value of disease or term t related to disease
or term A, DA(t), which can be calculated as:
{
DA(A) = 1

DA(t) = max{we ∗ DA(t′)|t′ ∈ children of (t)} if t �= A
(6)

where we is the semantic contribution factor for edge e
(e ∈ EA) linking term or disease t with its child term or
disease t′ . It is assigned between 0 and 1 according to the
types of associations. Term A contributes to its own is
defined as one. Then the semantic value of DO term or
disease A, DV (A) is calculated as:

DV (A) =
∑
t∈TA

DA(t) (7)

Thus given two DO terms or diseases A and B, the
semantic similarity between these two terms or disease is
defined as:

Ssim(A,B) =
∑

t∈TA∩TB

DA(t) + DB(t)
DV (A) + DV (B)

(8)

where DA(t) is the semantic value of disease t related to
DO term or disease A and DB(t) is the semantic value of
DO term or disease t associated to DO term or disease B.

Comparison with similar software
An R package “comorbidities” that has functions to
categorize comorbidites into the Deyo-Charlson index,
the original Elixhauser index of 30 comorbidities, and
the AHRQ comorbidity index of 29 diagnoses [35,36].
This package provides total comorbidity count or the
total Charlson score. But comoR provides relative risk,
φ-correlation, associated genes, pathway and p-value
between the comorbidity diseases. It could provide
comorbidity associations among all diseases. So comoR is
more useful than “comorbidities”.
Most of the researchers have done the survival analysis

and developed tools considering a single infection or dis-
ease. Cho et al. developed robust likelihood-based survival
modeling for microarray data [18] and Zhang et al. devel-
oped Net-Cox model by integrating network information
into the Cox’s proportional hazard model for the survival
prediction [37]. However, these approaches for analysing
the death and recurrence outcomes are based on the single
disease (e.g. ovarian cancer). But the survival of a patient
depends on the disease comorbidity, treatment plan and
environmental effect [38]. To observe the association
among diseases through the biomarker genes, we have
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compared the significance of genes for each disease using
network-based Cox regression approach. We have calcu-
lated network (genes co-expression and functional linkage
networks) based penalised regression coefficient (β) val-
ues of 5 genes in five diseases conditions(breast cancer,
colon cancer, ovarian cancer, liver cancer and osteosar-
coma) by using Net-Cox. For this comparative study we
have considered five NCBI GEO data sets, accession num-
bers are GSE3494, GSE17536, GSE26712, GSE10141 and
GSE21257 [39-43]. The comparative coefficient (β) val-
ues of five significant genes (BRCA1, BRCA2, PTEN,
TGFB2 and TP53) in 5 diseases conditions are reported
in the Table 1. It is observed that diseases may coexist in
the same patient. Our software is able to predict occur-
rence of other diseases in relation to primary disease. So
the comorbidity output of our software could be helpful
for more accurate survival analysis. So, comoR could be
integrate as a pipeline with the survival analysis softwares.

Discussion
Exploring associations among diseases at the molecu-
lar and clinical levels could greatly facilitate our under-
standing of pathogenesis, and eventually lead to better
diagnosis and treatment. If two diseases have associated
comorbidity, the occurrence of one of them in a patient
may increase the likelihood of developing the other dis-
eases. Development of methods integrating genetic and
clinical data will assist clinical decision making and repre-
sent a large step towards individualised medicine. Hidalgo
et al. analysed comorbidity associations using the medi-
cal records [4]. To our knowledge, there is no available R
software package for the prediction of disease comorbidi-
ties. An R package “comorbodoties” is able to categorises
ICD-9-CM codes based on published 30 comorbidity
indices using Deyo adaptation of Charlson index and the
Elixhauser index [35,36]. We have developed comoR, an R

package that implements different statistical approach for
the prediction of disease comorbidity using divers set of
data.
Advances in high-throughputmolecular assay technolo-

gies in the fields of genomics, proteomics and other
omics is increasing the diagnostic and therapeutic strate-
gies, and systems-driven strategies for personalised treat-
ment. In particular, the availability of these data sets
for many different diseases presents a ripe opportunity
to use data-driven approaches to advance our current
knowledge of disease relationships in a systematic way.
Patient’s genetic/genomic data is becoming important for
clinical decision making, including disease risk assess-
ment, disease diagnosis and subtyping, drug therapy and
dose selection [44]. In the future, clinicians will have
to consider genetic/genomic implications to patient care
throughout their clinical workflow, including electronic
prescribing of medications. The identified disease pat-
terns can then be further investigated with regards to their
diagnostic utility or help in the prediction of novel thera-
peutic targets. Therefore, comoR could be helpful for the
personalised medicine system. This software will provide
us to detect many diseases at the earliest detectable phase,
weeks, months, andmaybe years before symptoms appear.
Thus it could be applicable in the personalised medicine
and in clinical bioinformatics.

Conclusion
Doctors need to be kept updated on novel information on
likely comorbidities of diseases. The comoR software pro-
vides a robust approach to study disease comorbidities,
which can be easily integrated into pipelines for high-
throughput and clinical data analysis and to predict causal
inference of a disease. This software will help to gain
a better understanding of the complex pathogenesis of
disease risk phenotypes and the heterogeneity of disease

Table 1 Comparative values of genes co-expression and functional linkage network based penalised Cox regression
coefficient (β) of five significant genes (BRCA1, BRCA2, PTEN, TGFB2 and TP53) in five diseases conditions (breast cancer,
colon cancer, ovarian cancer, liver cancer and osteosarcoma)

Disease name Network type BRCA1 BRCA2 PTEN TGFB2 TP53

Co-expression 8.1253 58.4088 9.9136 31.5791 17.6486
Breast cancer

Functional linkage 1.3637 42.1227 53.2586 19.9091 23.4185

Co-expression 22.4097 18.3406 17.8181 28.2778 24.0951
Colon cancer

Functional linkage 40.4169 23.6457 37.3934 17.9620 20.2739

Co-expression 42.5902 155.2418 -0.0751 -0.4850 27.1997
Ovarian cancer

Functional linkage 24.1814 14.8738 33.2762 27.0234 -22.8965

Co-expression 5.7010 10.2188 41.2701 29.6339 3.2189
Liver cancer

Functional linkage 13.3196 11.4365 7.3683 3.1508 1.9305

Co-expression 11.8679 10.5565 -1.3561 -8.1221 4.4491
Osteosarcoma

Functional linkage 51.3299 17.1618 15.1504 4.2642 5.3983
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comorbidity. Thus it could be applicable in the person-
alised medicine and in clinical bioinformatics.

Availability and requirements
The software package comoR has been written in the plat-
form independent R programming language. It requires
R version 3.0.1 or newer to run. The software is freely
available at www.cl.cam.ac.uk/~mam211/comoR/ and will
appear in Comprehensive R Archive Network (CRAN) at
(http://cran.r-project.org/).

Additional file

Additional file 1: comoRdocumentation.
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